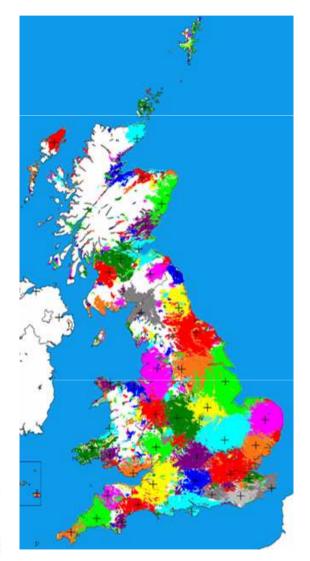


<u>Compatibility Challenges for Broadcast</u> <u>Networks and White Space Devices</u>

Mark Waddell, BBC R&D 12th September 2009

©BBC MMIX

Overview


- Background
 - White space definition
 - UK digital switch over plan
 - Available white space spectrum
- White Space Applications
 - Existing licensed
 - Proposed licence-exempt (LE)
- Access Techniques Cognitive Radio
 - Spectrum sensing
 - Geolocation
 - Beacons
- Technical Challenges
 - Spectrum sensing and the hidden node problem
 - ACI management
- Conclusions

What is White Space?

- Digital TV Planned as MFN
 - Derived from analogue plan
 - 84 main sites, ~1000 relay sites
- Typical channel re-use every 100km
- Relatively sparse use of UHF spectrum

UK TV Spectrum 2009

21	22	23	24	25	26	27	28	29	30	31	32	Channel
33	34	35	36	37	38	39	40	41	42	43	44	
45	46	47	48	49	50	51	52	53	54	55	56	
57	58	59	60	61	62	63	64	65	66	67	68	69

Interleaved Spectrum (DTT & PAL)

PMSE (radio microphones)

Radio Astronomy

Aeronautical Radar

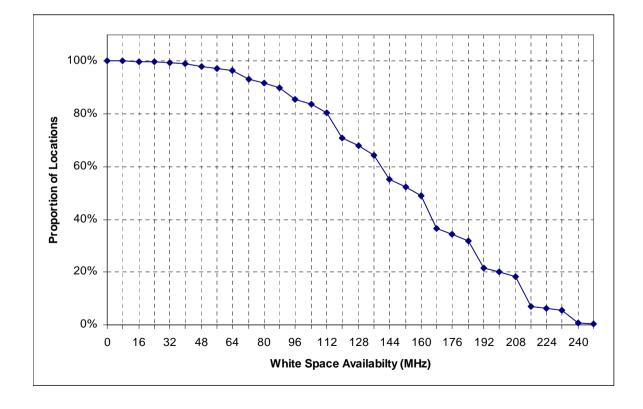
- MFN using 46 UHF channels (368MHz total)
- 11 MFN TV Services (5xPAL + 6xDTT multiplexes)
- Licensed interleaved PMSE access (radio microphones)

UK TV Spectrum 2012

21	22	23	24	25	26	27	28	29	30	31	32	Channel
33	34	35	36	37	38	39	40	41	42	43	44	
45	46	47	48	49	50	51	52	53	54	55	56	
57	58	59	60	61	62	63	64	65	66	67	68	69

PMSE (radio microphones)

Cleared Spectrum


- 16 channels (128MHz) cleared for auction
 - Upper cleared (9 channels) for UMTS-800 (LTE)
 - Lower cleared (7 channels) use to be determined
- 32 channels (256MHz) retained for 6 x DTT multiplexes and interleaved whitespace (PMSE + WSDs)

5

White Space Availability

- Naively, 256MHz DTT spectrum for 6 Multiplexes (48MHz)
- Increased use for TV Relays and at MFN boundaries
- Typically 50% of UK coverage area will have >150MHz White Space spectrum

A Word of Caution....

- 50% of coverage area not necessarily 50% of population
- Bottlenecks in densely populated areas where TV relay requirement is highest (e.g. London)
- Adjacent channel use of white space is restricted
 - ACI and OOB issues

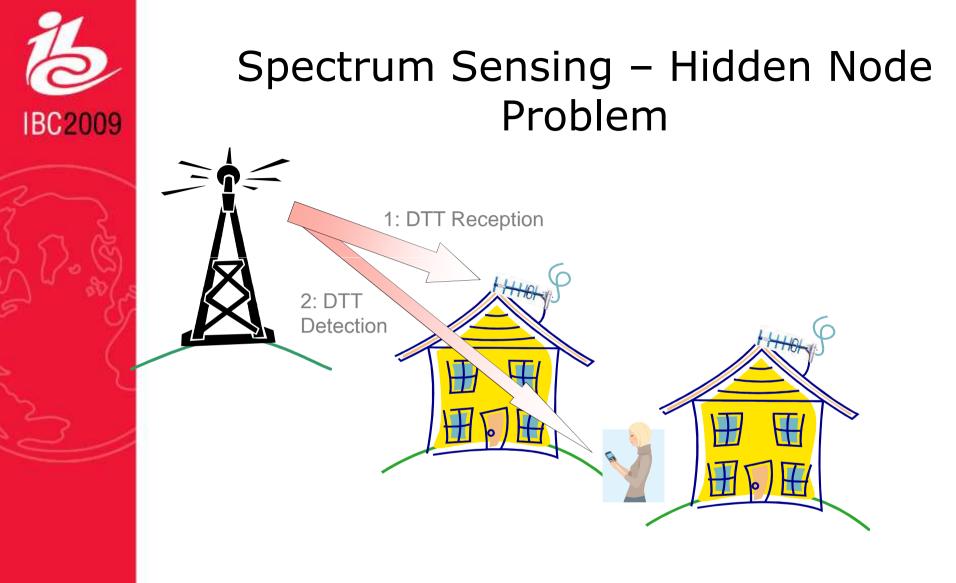
Existing White Space Applications

Programme Making and Special Events (PMSE)

- Radio microphones (10 - 50mW EIRP)
- TV Studios, ENG ,Theatres
- Typically licensed by a band manager (JFMG in the UK)

New White Space Applications

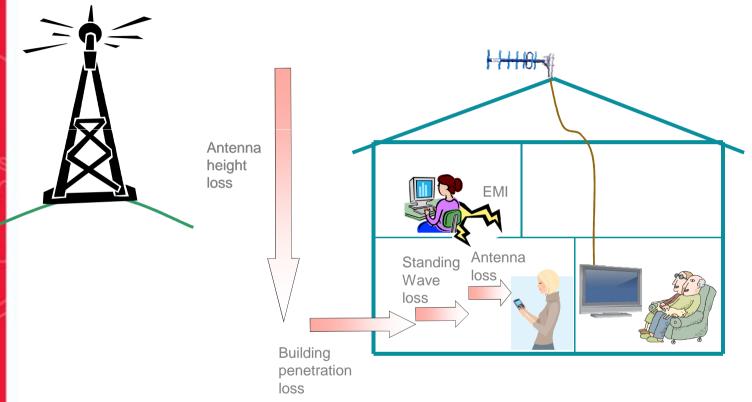
- Broadband Wireless Access
 - Rural Area Networks (IEEE 802.22)
 - "ADSL-like" broadband networks operated by an ISP
 - Up to 4W EIRP (802.22 Draft)
 - Lower power RAN variant may suit denser TV network in Europe
- In Home Networks
 - Improved WiFi (range & throughput)
 - Multimedia streaming and VOD
 - Internet sharing (e.g. FON model)
 - Helping to meet universal broadband objectives


White Space Access Techniques (UHF Cognitive Radio)

• Spectrum sensing

- Avoid incumbent TV or PMSE
 - Energy detection
 - Feature detection & correlation
- Geolocation
 - Location aware (GPS)
 - Internet database of channels and EIRP limits

Beacons


- Independent network to signal white space availability or
- Keep out areas for PMSE

- Detection path loss much higher than for fixed reception
 - Hidden node margin (path 2 path 1)
 - Resulting C/N for detection small

Hidden Node Components

- Height Loss
- Building Penetration Loss
- Standing Waves
- Antenna Loss
- EMI

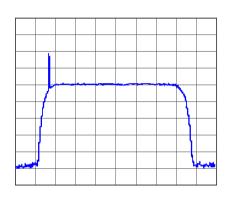
BBC Research & Development

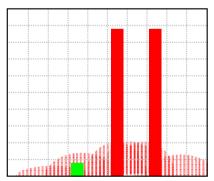
©BBC MMIX

Required DTT CNR for QEF (64QAM rate 2/3)19 dBPlanning Margin8 dB

Required DTT CNR for QEF (64QAM Planning Margin	rate 2/3)	19 dB 8 dB
DTT antenna gain	12	dBi
WSD Antenna gain	-10	dBi
C/N loss at WSD antenna		-22 dB

Required DTT CNR for QEF (64QAM ra	19 dB	
Planning Margin	8 dB	
DTT antenna gain	12	dBi
WSD Antenna gain	-10	dBi
C/N loss at WSD antenna		-22 dB
Height loss Building penetration loss Location variation (95%) C/N losses due to location	12 7 14	dB dB dB -33 dB


Required DTT CNR for QEF (64QAM rat Planning Margin	19 dB 8 dB	
DTT antenna gain	12	dBi
WSD Antenna gain	-10	dBi
C/N loss at WSD antenna		-22 dB
Height loss	12	dB
Building penetration loss	7	dB
Location variation (95%)	14	dB
C/N losses due to location		-33 dB
Degradation due to man made noise		-8 dB
C/N at Cognitive receiver		-36 dB

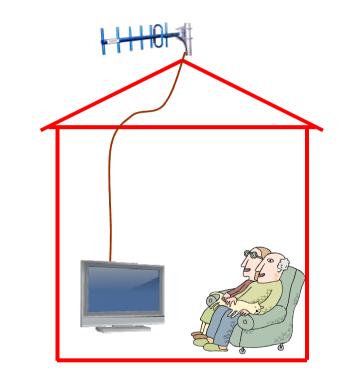

Source: "The Chester 1997 Multilateral Coordination Agreement"

Sensing Issues

- DTT typically buried in noise
- Detection very difficult
 - DVB-T sensing requires correlation over all modes
 - ATSC sensing easier using fixed pilot
 - Linearity issues
- Geolocation favoured over sensing for co-channel interference protection
 - Greater control of the White Space with ability to tune parameters

Adjacent Channel Interference (ACI) protection

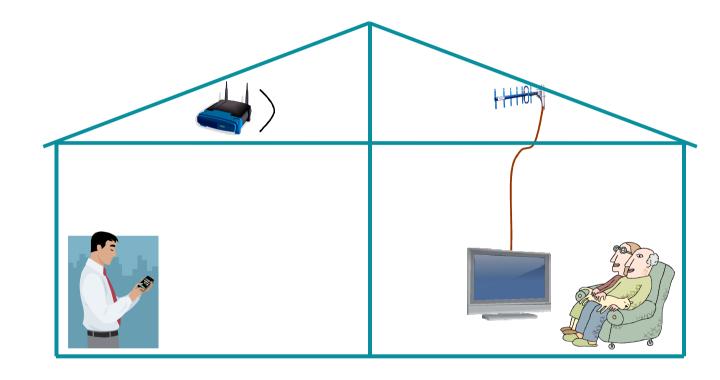
- Adjacent and non adjacent devices can still interfere with DTT
- Need EIRP limits
 - Potentially location dependent using geolocation techniques to maximize WSD performance



Calculation of EIRP limits – ACI protection

- Consider C/I performance of receiver and planned DTT signal level to define maximum possible WSD interference level
- Calculate path loss from WSD to DTT receiver for a given scenario
- Infer maximum WSD EIRP

Interference Scenario 1: WSD ground floor to fixed DTT



- DTT @ -72dBm
- Receiver C/I: -27dB adjacent (-38dB alternate)
 - Maximum EIRP: +3dBm

(-38dB alternate) (+14dBm alternate)

Interference Scenario 2: Loft mounted WSD to loft DTT

- Path loss at 500MHz, 37dB
- DTT @ -79dBm (7dB shielding)
- Receiver C/I: -27dB adjacent (-38dB alternate)
 - Maximum EIRP: -15dBm (!) (-4dBm alternate)

Comparison of required EIRP limits with Regulator Proposals

Scenario	EIRP Protection requirement	
	Outdoor	Loft
Adjacent Channel Use	+3dBm	-15dBm
Non Adjacent Channel Use	+14dBm	-4dBm

Comparison of required EIRP limits with Regulator Proposals

Scenario	EIRP Protection requirement		FCC-8-260 14/11/08		
	Outdoor	Loft	Mobile	Fixed	
Adjacent Channel Use	+3dBm	-15dBm	+16dBm	-	
Non Adjacent Channel Use	+14dBm	-4dBm	+20dBm	+36dBm	

Comparison of required EIRP limits with Regulator Proposals

Scenario	EIRP Protection requirement		FCC-8-26 14/11/08	Ofcom 1/7/09	
	Outdoor	Loft	Mobile	Fixed	
Adjacent Channel Use	+3dBm	-15dBm	+16dBm	-	+4dBm
Non Adjacent Channel Use	+14dBm	-4dBm	+20dBm	+36dBm	+17dBm

- ACI issues with the current proposals
- Loft antenna and portable DTT reception unprotected

Conclusions

- White Space Devices can potentially enable new applications
 - Mobile broadband, home networks & RANs
- Sensing very difficult to engineer
- Geolocation emerging as preferred access solution for CCI prevention
 - Parameters can be tuned over time to manage interference
- Beacons useful to define keep out areas for PMSE

Conclusions

- Adjacent and non-adjacent channel interference risks
- Regulator EIRP proposals do not protect current receivers
- Particular problems
 - At edge of DTT coverage area
 - Loft reception with indoor WSDs
 - Portable reception (unprotected)

Thank you !

- Questions ?