
Archive Development Mo McRoberts, April 2012

Digital Public Space: Crafting URIs and Publishing Data



Archive Development

What’s this about?

• This is a (short) guide to publishing linked data on 
the Web.

• In particular, how to construct good URIs for the 
things described by that data, and how to make 
sure that the data can be easily retrieved and 
processed.

• These are not rules — they are guidelines to 
promote interoperability. 



Archive Development

I. Dereferencing* the 
URI for something 

should return the data 
about that thing.

* Attempting to retrieve a representation of the resource associated with that URI.
For example, dereferencing an http: URI involves performing an HTTP request for it.



Archive Development

• This means that, in general, it’s a good idea 
to use http: or https: URIs to identify 
your things.

• This brings about its own problem: what 
kind of URIs should refer to documents, 
and what to things described by those 
documents?

Implications



Archive Development

• Use a fragment identifier (e.g., “#thing”) in the 
URIs for things described by documents; don’t use 
fragments for the URIs of the documents.

• Fragment identifiers are never sent as part of 
HTTP requests (to do so is a direct violation of 
the protocol).

• To a server, the “hash” and “hashless” URIs look 
the same, and so return the same document.

• This is generally the simplest and most 
straightforward disambiguation mechanism.

Use “hash” URIs



Archive Development

For example:
http://example.com/items/abc1234

• A document URI

http://example.com/items/abc1234#thing

• A thing described by that document

Dereferencing either URI will result in the same 
document — and which can contain distinct 
descriptions of both the document and thing (“This 
data was published yesterday” versus “this book was 
published a year ago”).



Archive Development

For example:
http://example.com/items/abc1234

• A document URI

http://example.com/items/abc1234#thing

• A thing described by that document

Others linking to your data and referring to the 
thing you describe can differentiate between them 
properly (“I like this data” versus “I like this animal”).



Archive Development

For example:

thing

http://example.com/items/abc1234#thing

document

http://example.com/items/abc1234

URI is dereferenced by performing an HTTP request

“#thing” is removed as part of the request

the response
contains a description of…



Archive Development

II. Be prepared to 
publish data in multiple 
formats, but use RDF/

XML as a baseline.



Archive Development

• Employ HTTP Content Negotiation to serve 
different representations of documents to different 
clients.

• RDF/XML is the most widely-supported 
serialisation of RDF in consumers at present.

• The data format landscape doesn’t stand still: best 
practice will change over time.

• Other RDF serialisations (and non-RDF formats) 
exist, and it’s good to serve them too if you can.

Implications



Archive Development

• Include a Vary:	  accept header in your responses.

• Include a Content-‐Location header in your 
responses, giving the URL of the specific 
representation being served to the consumer.

• Include a Alternates header in your responses to 
describe different variants.



Archive Development

• Include <link	  rel="alternate"	  …> elements 
in any HTML representations.

• Use predictable extensions as part of your 
representation-specific URLs: 
e.g., .rdf, .json, .html — this doesn’t aid 
software, but does make developers’ lives easier.

• If possible, include information about your 
documents and the various available 
representations in those documents.



Archive Development

For example:

thing

http://example.com/items/abc1234#thing

document

http://example.com/items/abc1234

HTTP request

HTML

RDF/XML

Includes an Accept header

Content-Location:
http://example.com/items/abc1234.html

Content-Location:
http://example.com/items/abc1234.rdf

representations

server picks a suitable representation 
based upon the Accept header



Archive Development

III. Construct URIs so 
as to minimise risk of 

change.



Archive Development

• Avoid using other people’s domain names in your 
canonical URIs.

• Avoid deriving URIs from metadata liable to need 
correction or otherwise changing over time (such 
as titles).

• When URIs do eventually need to change, handle 
this gracefully through 301 redirects and 410 
(“Gone”) responses.

Implications



Archive Development

For example:

/items/d6707813#thing

• Derived from an opaque permanent identifier.

• Does not need to change even when 
corrections or other changes to the data are 
made.

• Follows a pattern (/items/:id#thing), which 
aids developers’ understanding.



Archive Development

IV. Make discovery easy



Archive Development

• Don’t put your “human-facing” HTML 
representations and your “machine-
facing” structured data in two completely different 
places.

• Use predictable consistent patterns.

• Publish dataset descriptions describing search 
endpoints, URI patterns, and providing examples.

• Publish a “root” dataset on your domain root, or 
at /.well-‐known/void (or both).

Implications



Archive Development

V. Link and cross-
reference



Archive Development

• It’s fine to publish descriptions of things “owned” 
by other people: create your own identifiers for 
them and link between them.

• Similarly, if you can, link to other people publishing 
descriptions of things you “own”.

• Use owl:sameAs to indicate where two URIs really 
do refer to the same thing.

• Don’t feel the need to generate your own URIs 
just for things you’re referencing, though — linking 
through other people’s URIs is fine (and good).

Implications



Archive Development

Resources



Archive Development

• http://patterns.dataincubator.org/book/

• “Linked Data Patterns” — Leigh Dodds and Ian 
Davis

• http://www.w3.org/Provider/Style/URI.html

• “Cool URIs don’t change” — Sir Tim Berners-
Lee.

• http://www.iana.org/assignments/media-types/
index.html

• IANA MIME type assignments, includes 
recommended file extensions.

• http://en.wikipedia.org/wiki/Content_negotiation

• HTTP Content Negotiation.

http://patterns.dataincubator.org/book/
http://patterns.dataincubator.org/book/
http://www.w3.org/Provider/Style/URI.html
http://www.w3.org/Provider/Style/URI.html
http://www.iana.org/assignments/media-types/index.html
http://www.iana.org/assignments/media-types/index.html
http://www.iana.org/assignments/media-types/index.html
http://www.iana.org/assignments/media-types/index.html
http://en.wikipedia.org/wiki/Content_negotiation
http://en.wikipedia.org/wiki/Content_negotiation


Archive Development

• http://httpd.apache.org/docs/current/mod/
mod_negotiation.html

• Configuration content negotiation for static 
resources with Apache

• http://vocab.deri.ie/void

• Vocabulary of Interlinked Datasets (VoID)

• http://vocab.deri.ie/void/autodiscovery

• VoID Autodiscovery via a RFC5785 .well-‐
known resource.

http://httpd.apache.org/docs/current/mod/mod_negotiation.html
http://httpd.apache.org/docs/current/mod/mod_negotiation.html
http://httpd.apache.org/docs/current/mod/mod_negotiation.html
http://httpd.apache.org/docs/current/mod/mod_negotiation.html
http://vocab.deri.ie/void
http://vocab.deri.ie/void
http://vocab.deri.ie/void/autodiscovery
http://vocab.deri.ie/void/autodiscovery


Archive Development

• http://dublincore.org/documents/dcmi-type-
vocabulary/

• DCMI Media Types — classes for describing 
documents

• http://purl.org/NET/mediatypes

• Linked data for MIME types (for use with 
dct:format)

• http://tools.ietf.org/html/draft-ietf-http-alternates

• “Alternates” HTTP response header (expired 
draft)

http://dublincore.org/documents/dcmi-type-vocabulary/
http://dublincore.org/documents/dcmi-type-vocabulary/
http://dublincore.org/documents/dcmi-type-vocabulary/
http://dublincore.org/documents/dcmi-type-vocabulary/
http://purl.org/NET/mediatypes
http://purl.org/NET/mediatypes
http://tools.ietf.org/html/draft-ietf-http-alternates
http://tools.ietf.org/html/draft-ietf-http-alternates


Archive Development

Case Study:
BBC /programmes



Archive Development

“Thing” URI

http://www.bbc.co.uk/programmes/b01cpfvb#programme

• The fragment identifier — #programme — is used to 
differentiate information about the programme itself 
from the document describing it by giving them distinct 
URIs which are both dereferenced to the same 
document.

• Dereferencing this URI results in a request for the URI 
without the #programme fragment identifier.



Archive Development

Document URI

http://www.bbc.co.uk/programmes/b01cpfvb

• The server performs HTTP Content Negotiation when 
requests for this resource are received.

• A successful response will contain a specific 
representation of this document, and include a 
Content-‐Location header identifying it.

• You can copy and paste from the browser address bar 
into a linked data consumer application.



Archive Development

RDF/XML 
representation URL

http://www.bbc.co.uk/programmes/b01cpfvb.rdf

• When clients indicate that they prefer application/
rdf+xml, they will be delivered this resource which 
contains a description of both itself, and of the 
programme (identified by its “thing” URI).



Archive Development

HTML (human-facing) 
representation URL

http://www.bbc.co.uk/programmes/b01cpfvb.html

• This representation will generally be provided to 
ordinary web browsers requesting information about 
the programme.



Archive Development

JSON representation 
URL

http://www.bbc.co.uk/programmes/b01cpfvb.json

• Not all consumers will want or understand RDF 
serialisations: you can provide as many different 
representations as you’re able to — JSON, YAML, CSV, 
XLS.



Archive Development

For example:

thing

http://www.bbc.co.uk/programmes/b01cpfvb#programme

document

http://www.bbc.co.uk/programmes/b01cpfvb

HTTP request

HTML

RDF/XML

Includes an Accept header

Content-Location:
http://www.bbc.co.uk/programmes/b01cpfvb.html

Content-Location:
http://www.bbc.co.uk/programmes/b01cpfvb.rdf

representations

server picks a suitable representation 
based upon the Accept header



Archive Development

Try it! (with curl)
$	  curl	  -‐H	  'Accept:	  application/rdf+xml'	  http://www.bbc.co.uk/programmes/b01cpfvb
>	  GET	  http://www.bbc.co.uk/programmes/b01cpfvb	  HTTP/1.1
>	  User-‐Agent:	  curl/7.21.4	  (universal-‐apple-‐darwin11.0)	  libcurl/7.21.4	  OpenSSL/0.9.8r	  
zlib/1.2.5
>	  Host:	  www.bbc.co.uk
>	  Proxy-‐Connection:	  Keep-‐Alive
>	  Accept:	  application/rdf+xml
>	  
*	  HTTP	  1.0,	  assume	  close	  after	  body
<	  HTTP/1.0	  200	  OK
<	  Server:	  Apache
<	  Cache-‐Control:	  public,	  max-‐age=300,	  s-‐maxage=300
<	  Content-‐Type:	  application/rdf+xml
<	  Date:	  Thu,	  05	  Apr	  2012	  09:53:01	  GMT
<	  Expires:	  Thu,	  05	  Apr	  2012	  09:58:00	  GMT
<	  Access-‐Control-‐Allow-‐Origin:	  *
<	  X-‐Bbc-‐Licence-‐Url:	  http://backstage.bbc.co.uk/archives/2005/01/terms_of_use.html
<	  Accept-‐Ranges:	  bytes
<	  X-‐Bbc-‐Licence-‐Text:	  Access	  to	  and	  use	  of	  this	  feed	  is	  for	  non-‐commercial	  use	  only	  and	  
is	  covered	  by	  the	  BBC	  Backstage	  Terms	  of	  Use
<	  ETag:	  "307bcc6b5782dcc16c3eadee54bdb336"
<	  X-‐Programmes-‐Host:	  nolaps402.wtf.nolcontent.net:80
<	  Content-‐Length:	  2077
*	  HTTP/1.0	  connection	  set	  to	  keep	  alive!
<	  Connection:	  keep-‐alive


